Investigation of TC track uncertainty using multiple ensembles for the official TC forecast

Jinyeon Kim, Joohyung Son* National Typhoon Center, KMA

2022. 11. 29

Introduction

KMA TC information

Area of 70% probability

• The **purpose** is to show uncertainty of the TC track

Methodology

- Statistical values from the previous 3 year's TC track errors
 ✓ 70th percentile of an error CDF
- Update the values at the beginning of every year
- Apply identical values to every TC for one year

Limitations

- Cannot represent the uncertainty of an individual TC track forecast, which is always different
- Depends on the TC forecasters' skill (unreliable)

Kawabata and Yamaguchi (2020)

 Showed that a multiple ensemble composed of four global ensembles was capable of predicting the situation-dependent uncertainties of TC track forecasts in the along-track (AT) and cross-track (CT) directions; therefore, an elliptical instead of circular shape can be used to represent the forecast uncertainties associated with TC tracks.

Hamill et al (2011)

• Proposed a decomposition of ensemble spread and errors in eigenspace.

Zhang and Yu (2017)

- Generated the probability ellipse of Hamill et al (2011).
- ECMWF-EPS probability ellipse was clearly better up to 48 h. Afterward the improvements became negligible.

Data

- ✤ Period: 3 years from 2019 to 2021
- ✤ Number of named TCs: 74
- Ensembles
 - Used the EPS data issued in the previous 12 hours.
 - Five single ensembles

	KMA-UM	ECMWF	JMA	NCEP	UKMO-UM
Ensemble size	25	51	27 → 51('21)	21→ 31(['] 20)	36

- Two multiple ensembles : ALL and P-ALL. ("P-" for "processed".)
- Ensemble size: 160 at start of period / 194 at end of period.
- ✤ Cases
 - For each ensemble, all members were excluded at a given forecast range if less than 70% of members were still TCs.
 - All EPSs were excluded at a particular forecast range if any EPS was unavailable

Multiple Ensembles

PDF of revised EPSs and P-ALL

✤ ALL

EPS member

each EPS

Mean of

Forecast

multiple EPS

Operational

 $\bigcirc \bigcirc \bigcirc$ Mean of

-•

 \bigcirc

- Simple multiple ensemble
- Regards a single member in the single EPS as a single member in the multiple ensemble

P-ALL

- Processed multiple ensemble
- Make the ensemble means of the EPSs coincide

Probability circle and ellipse methods

- Radius which includes the 70% of the EPS members that are closest to the ensemble mean
- Simple and easy

- Axes are determined by the AT and CT directions relative to the previous 24 h position
- Radii are determined by the 70% of AT and CT differences closest to the ensemble mean
- It cannot include 70% of members, so the probability area is relatively small

Probability circle and ellipse methods

ensemble mean It cannot include 70% of members, so the probability area is relatively small

- Concentration area of the FPS members
- Major and minor axes are determined from eigenvectors in the eigenspace of members
- By changing two axes every 10 km, the smallest area keeping 70% of ensemble members around the ensemble mean are adopted

Apply to the official TC forecast

- The circle or ellipse is applied to the official TC forecast
- Only for the ellipse (AT-CT) method, the direction of axes is rotated by the angle difference between the EPS mean direction of movement and the direction of movement of the official TC forecast.

Case1: KAMNURI at 00 UTC on 30 Nov 2019

TC forecast tracks of the deterministic models and EPS means

- Small spread and high confidence
- All methods have smaller area than the operational circles of 70% probability
- EPS-based uncertainty circles or ellipses have the benefit narrowing warning areas of TC track forecasts

Case2: CHANTU at 12 UTC on 12 Sep 2021

TC forecast tracks of the deterministic models and EPS means

- TC predictions are located west of the analysis position at T+72
- Ellipse (AT-CT), which doesn't include 70% of ensemble members, is too narrow to represent the uncertainty.

Case3: HINNAMNOR at 00 UTC on 1 Sep 2022

ALL, Circle

TC forecast tracks of the deterministic models and EPS means

- TC predictions influenced by the jet steam are elongated in the SW-NE direction at T+120.
- Ellipse (AT-CT), rotated according to the official track, may be suboptimal, especially when there are large differences of AT directions between the official forecast track and the ensemble mean track.
- (It seems it's better to keep all EPS distribution)

Verification

Hit rate (or detection rate)

The hit rate is defined as the percentage of the observed TC central positions within the 70% probability circle or ellipse.

- The operational radii have over 0.7 hit rate, around 0.8, for all forecast times. (It means the official forecast skill is getting better year by year)
- Ellipse (AT-CT), which has the smallest area because of the methodology, has the lowest hit rate. Therefore, the method needs to be improved.
- With the circle method and the ellipse (EV), ALL shows worse results than the operational method due to overdispersion.
- P-ALL reduces the hit rate compared to the ALL. It is almost 0.7 in both the circle and the ellipse (EV) at 1 and 2 forecast days
 - The five single EPSs were under-spread at the early lead time. P-ALL could improve the performance
 - In addition, since the distribution of the ensemble members is relatively isotropic at this time, the circle and the ellipse (EV) methods give quite similar result
- After 3 days, any single EPS is better than P-ALL and the ellipse (EV) is better than the circle for a single EPS

Summary

- We investigated the possibility to replace the area of 70 % probability circle, based on statistics from the previous 3 year's operational track errors, with an ensemble-based method: circle, ellipse (AT-ET), or ellipse (EV).
- For 24 and 48 forecast hours, the processed multiple ensemble (P-ALL) for both the circle and ellipse (EV) method outperformed the operational method.
- After 72 forecast hours, even the processed multiple ensemble is too overspread, so that a single ensemble is more likely to be consistent with the 70% probability area.
- Therefore, it is required to apply different methods according to the forecast time
- It may be a problem to apply a method based on the ensemble spread to the official TC track forecast, which differs from the ensemble mean track, as we saw for the ellipse (AT-CT) method, which was worse than the operational method.
 - Nevertheless, we have to try to utilizing ensembles for TC forecasts, since they provide the best method for estimating uncertainty, and situation-dependent uncertainty is valuable information.

Thank you